Lines
0 %
Functions
#[cfg(test)]
#[test]
fn test1() {
use kissat_rs::Assignment;
use kissat_rs::Solver;
// Define three literals used in both formulae.
let x = 1;
let y = 2;
let z = 3;
// Construct a formula from clauses (i.e. an iterator over literals).
// (~x || y) && (~y || z) && (x || ~z) && (x || y || z)
let formula1 = vec![vec![-x, y], vec![-y, z], vec![x, -z], vec![x, y, z]];
let satisfying_assignment = Solver::solve_formula(formula1).unwrap();
// The formula from above is satisfied by the assignment: x -> True, y -> True, z -> True
if let Some(assignments) = satisfying_assignment {
assert_eq!(assignments.get(&x).unwrap(), &Some(Assignment::True));
assert_eq!(assignments.get(&y).unwrap(), &Some(Assignment::True));
assert_eq!(assignments.get(&z).unwrap(), &Some(Assignment::True));
}
// (x || y || ~z) && ~x && (x || y || z) && (x || ~y)
let formula2 = vec![vec![x, y, -z], vec![-x], vec![x, y, z], vec![x, -y]];
let unsat_result = Solver::solve_formula(formula2).unwrap();
// The second formula is unsatisfiable.
// This can for example be proved by resolution.
assert_eq!(unsat_result, None);