conjure_cp_core/ast/
moo.rs

1// NOTE
2//
3// we use a wrapper type over Arc, instead of just using Arc, so that we can implement traits on it
4// (e.g. Uniplate, Serialize).
5//
6// As we are just using Arc for copy on write, not shared ownership, it is safe to break shared
7// ownership in Moo's Uniplate implementation, by calling Arc::make_mut and Arc::new on modified
8// values. In general, this is not safe for all Rc/Arc types, e.g. those that use Cell / RefCell
9// internally.
10//
11// ~niklasdewally 13/08/25
12
13use polyquine::Quine;
14use proc_macro2::TokenStream;
15use serde::{Deserialize, Serialize};
16use std::hash::{Hash, Hasher};
17use std::ops::DerefMut;
18use std::{collections::VecDeque, fmt::Display, ops::Deref, sync::Arc};
19use uniplate::{
20    Biplate, Tree, Uniplate,
21    impl_helpers::{transmute_if_same_type, try_transmute_if_same_type},
22    spez::try_biplate_to,
23};
24
25/// A clone-on-write, reference counted pointer to an AST type.
26///
27/// Cloning values of this type will not clone the underlying value until it is modified, e.g.,
28/// with [`Moo::make_mut`].
29///
30/// Unlike `Rc` and `Arc`, trait implementations on this type do not need to preserve shared
31/// ownership - that is, two pointers that used to point to the same value may not do so after
32/// calling a trait method on them. In particular, calling Uniplate methods may cause a
33/// clone-on-write to occur.
34///
35/// **Note:** like Box` and `Rc`, methods on `Moo` are all associated functions, which means you
36/// have to call them as, e.g. `Moo::make_mut(&value)` instead of `value.make_mut()`. This is so
37/// that there are no conflicts with the inner type `T`, which this type dereferences to.
38#[derive(PartialEq, Eq, Clone, Debug)]
39pub struct Moo<T> {
40    inner: Arc<T>,
41}
42
43impl<T: Quine> Quine for Moo<T> {
44    fn ctor_tokens(&self) -> TokenStream {
45        let inner = self.inner.as_ref().ctor_tokens();
46        quote::quote! { ::conjure_cp::ast::Moo::new(#inner) }
47    }
48}
49
50impl<T> Moo<T> {
51    /// Constructs a new `Moo<T>`.
52    pub fn new(value: T) -> Moo<T> {
53        Moo {
54            inner: Arc::new(value),
55        }
56    }
57}
58
59impl<T: Clone> Moo<T> {
60    /// Makes a mutable reference into the given `Moo`.
61    ///
62    /// If there are other `Moo` pointers to the same allocation, then `make_mut` will `clone` the
63    /// inner value to a new allocation to ensure unique ownership. This is also referred to as
64    /// clone-on-write.
65    pub fn make_mut(this: &mut Moo<T>) -> &mut T {
66        Arc::make_mut(&mut this.inner)
67    }
68
69    /// If we have the only reference to T then unwrap it. Otherwise, clone T and return the clone.
70    ///
71    /// Assuming moo_t is of type `Moo<T>`, this function is functionally equivalent to
72    /// `(*moo_t).clone()`, but will avoid cloning the inner value where possible.
73    pub fn unwrap_or_clone(this: Moo<T>) -> T {
74        Arc::unwrap_or_clone(this.inner)
75    }
76}
77
78impl<T> AsRef<T> for Moo<T> {
79    fn as_ref(&self) -> &T {
80        self.inner.as_ref()
81    }
82}
83
84impl<T> Deref for Moo<T> {
85    type Target = T;
86
87    fn deref(&self) -> &Self::Target {
88        self.inner.deref()
89    }
90}
91
92impl<T: Clone> DerefMut for Moo<T> {
93    fn deref_mut(&mut self) -> &mut Self::Target {
94        Moo::make_mut(self)
95    }
96}
97
98impl<T> Uniplate for Moo<T>
99where
100    T: Uniplate,
101{
102    fn uniplate(
103        &self,
104    ) -> (
105        uniplate::Tree<Self>,
106        Box<dyn Fn(uniplate::Tree<Self>) -> Self>,
107    ) {
108        let this = Moo::clone(self);
109
110        // do not need to preserve shared ownership, so treat this identically to values of the
111        // inner type.
112        let (tree, ctx) = try_biplate_to!((**self).clone(), Moo<T>);
113        (
114            Tree::Many(VecDeque::from([tree.clone()])),
115            Box::new(move |x| {
116                let Tree::Many(trees) = x else { panic!() };
117                let new_tree = trees.into_iter().next().unwrap();
118                let mut this = Moo::clone(&this);
119
120                // Only update the pointer with the new value if the value has changed. Without
121                // this check, writing to the pointer might trigger a clone on write, even
122                // though the value inside the pointer remained the same.
123                if new_tree != tree {
124                    let this = Moo::make_mut(&mut this);
125                    *this = ctx(new_tree)
126                }
127
128                this
129            }),
130        )
131    }
132}
133
134impl<To, U> Biplate<To> for Moo<U>
135where
136    To: Uniplate,
137    U: Uniplate + Biplate<To>,
138{
139    fn biplate(&self) -> (Tree<To>, Box<dyn Fn(Tree<To>) -> Self>) {
140        if let Some(self_as_to) = transmute_if_same_type::<Self, To>(self) {
141            // To = Self -> return self
142            let tree = Tree::One(self_as_to.clone());
143            let ctx = Box::new(move |x| {
144                let Tree::One(self_as_to) = x else { panic!() };
145
146                let self_as_self = try_transmute_if_same_type::<To, Self>(&self_as_to);
147
148                Moo::clone(self_as_self)
149            });
150
151            (tree, ctx)
152        } else {
153            // To != Self -> return children of type To
154
155            let this = Moo::clone(self);
156
157            // Do not need to preserve shared ownership, so treat this identically to values of the
158            // inner type.
159            let (tree, ctx) = try_biplate_to!((**self).clone(), To);
160            (
161                Tree::Many(VecDeque::from([tree.clone()])),
162                Box::new(move |x| {
163                    let Tree::Many(trees) = x else { panic!() };
164                    let new_tree = trees.into_iter().next().unwrap();
165                    let mut this = Moo::clone(&this);
166
167                    // Only update the pointer with the new value if the value has changed. Without
168                    // this check, writing to the pointer might trigger a clone on write, even
169                    // though the value inside the pointer remained the same.
170                    if new_tree != tree {
171                        let this = Moo::make_mut(&mut this);
172                        *this = ctx(new_tree)
173                    }
174
175                    this
176                }),
177            )
178        }
179    }
180}
181
182impl<'de, T: Deserialize<'de>> Deserialize<'de> for Moo<T> {
183    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
184    where
185        D: serde::Deserializer<'de>,
186    {
187        Ok(Moo::new(T::deserialize(deserializer)?))
188    }
189}
190
191impl<T: Serialize> Serialize for Moo<T> {
192    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
193    where
194        S: serde::Serializer,
195    {
196        T::serialize(&**self, serializer)
197    }
198}
199
200impl<T: Display> Display for Moo<T> {
201    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
202        (**self).fmt(f)
203    }
204}
205
206impl<T: Hash> Hash for Moo<T> {
207    fn hash<H: Hasher>(&self, state: &mut H) {
208        (**self).hash(state);
209    }
210}
211
212impl<T> From<T> for Moo<T> {
213    fn from(value: T) -> Self {
214        Moo::new(value)
215    }
216}