conjure_core/solver/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
//! A high-level API for interacting with constraints solvers.
//!
//! This module provides a consistent, solver-independent API for interacting with constraints
//! solvers. It also provides incremental solving support, and the returning of run stats from
//! solvers.
//!
//! -----
//!
//! - [Solver<Adaptor>] provides the API for interacting with constraints solvers.
//!
//! - The [SolverAdaptor] trait controls how solving actually occurs and handles translation
//! between the [Solver] type and a specific solver.
//!
//! - [adaptors] contains all implemented solver adaptors.
//!
//! - The [model_modifier] submodule defines types to help with incremental solving / changing a
//! model during search. The entrypoint for incremental solving is the [Solver<A,ModelLoaded>::solve_mut]
//! function.
//!
//! # Examples
//!
//! ## A Successful Minion Model
//!
//! ```rust
//! use std::sync::{Arc,Mutex};
//! use conjure_core::parse::get_example_model;
//! use conjure_core::rule_engine::resolve_rule_sets;
//! use conjure_core::rule_engine::rewrite_model;
//! use conjure_core::solver::{adaptors, Solver, SolverAdaptor};
//! use conjure_core::solver::states::ModelLoaded;
//! use conjure_core::solver::SolverFamily;
//!
//! // Define and rewrite a model for minion.
//! let model = get_example_model("bool-03").unwrap();
//! let rule_sets = resolve_rule_sets(SolverFamily::Minion, &vec!["Constant".to_string()]).unwrap();
//! let model = rewrite_model(&model,&rule_sets).unwrap();
//!
//!
//! // Solve using Minion.
//! let solver = Solver::new(adaptors::Minion::new());
//! let solver: Solver<adaptors::Minion,ModelLoaded> = solver.load_model(model).unwrap();
//!
//! // In this example, we will count solutions.
//! //
//! // The solver interface is designed to allow adaptors to use multiple-threads / processes if
//! // necessary. Therefore, the callback type requires all variables inside it to have a static
//! // lifetime and to implement Send (i.e. the variable can be safely shared between theads).
//! //
//! // We use Arc<Mutex<T>> to create multiple references to a threadsafe mutable
//! // variable of type T.
//! //
//! // Using the move |x| ... closure syntax, we move one of these references into the closure.
//! // Note that a normal closure borrow variables from the parent so is not
//! // thread-safe.
//!
//! let counter_ref = Arc::new(Mutex::new(0));
//! let counter_ref_2 = counter_ref.clone();
//! solver.solve(Box::new(move |_| {
//! let mut counter = (*counter_ref_2).lock().unwrap();
//! *counter += 1;
//! true
//! }));
//!
//! let mut counter = (*counter_ref).lock().unwrap();
//! assert_eq!(*counter,2);
//! ```
//!
//! # The Solver callback function
//!
//! The callback function given to `solve` is called whenever a solution is found by the solver.
//!
//! Its return value can be used to control how many solutions the solver finds:
//!
//! * If the callback function returns `true`, solver execution continues.
//! * If the callback function returns `false`, the solver is terminated.
//!
// # Implementing Solver interfaces
//
// Solver interfaces can only be implemented inside this module, due to the SolverAdaptor crate
// being sealed.
//
// To add support for a solver, implement the `SolverAdaptor` trait in a submodule.
//
// If incremental solving support is required, also implement a new `ModelModifier`. If this is not
// required, all `ModelModifier` instances required by the SolverAdaptor trait can be replaced with
// NotModifiable.
//
// For more details, see the docstrings for SolverAdaptor, ModelModifier, and NotModifiable.
#![allow(dead_code)]
#![allow(unused)]
#![allow(clippy::manual_non_exhaustive)]
use std::any::Any;
use std::cell::OnceCell;
use std::collections::HashMap;
use std::error::Error;
use std::fmt::{Debug, Display};
use std::rc::Rc;
use std::sync::{Arc, RwLock};
use std::time::Instant;
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use strum_macros::{Display, EnumIter, EnumString};
use thiserror::Error;
use crate::ast::{Literal, Name};
use crate::context::Context;
use crate::stats::SolverStats;
use crate::Model;
use self::model_modifier::ModelModifier;
use self::states::{ExecutionSuccess, Init, ModelLoaded, SolverState};
pub mod adaptors;
pub mod model_modifier;
#[doc(hidden)]
mod private;
pub mod states;
#[derive(
Debug,
EnumString,
EnumIter,
Display,
PartialEq,
Eq,
Hash,
Clone,
Copy,
Serialize,
Deserialize,
JsonSchema,
)]
pub enum SolverFamily {
SAT,
Minion,
}
/// The type for user-defined callbacks for use with [Solver].
///
/// Note that this enforces thread safety
pub type SolverCallback = Box<dyn Fn(HashMap<Name, Literal>) -> bool + Send>;
pub type SolverMutCallback =
Box<dyn Fn(HashMap<Name, Literal>, Box<dyn ModelModifier>) -> bool + Send>;
/// A common interface for calling underlying solver APIs inside a [`Solver`].
///
/// Implementations of this trait aren't directly callable and should be used through [`Solver`] .
///
/// The below documentation lists the formal requirements that all implementations of
/// [`SolverAdaptor`] should follow - **see the top level module documentation and [`Solver`] for
/// usage details.**
///
/// # Encapsulation
///
/// The [`SolverAdaptor`] trait **must** only be implemented inside a submodule of this one,
/// and **should** only be called through [`Solver`].
///
/// The `private::Sealed` trait and `private::Internal` type enforce these requirements by only
/// allowing trait implementations and calling of methods of SolverAdaptor to occur inside this
/// module.
///
/// # Thread Safety
///
/// Multiple instances of [`Solver`] can be run in parallel across multiple threads.
///
/// [`Solver`] provides no concurrency control or thread-safety; therefore, adaptors **must**
/// ensure that multiple instances of themselves can be ran in parallel. This applies to all
/// stages of solving including having two active `solve()` calls happening at a time, loading
/// a model while another is mid-solve, loading two models at once, etc.
///
/// A [SolverAdaptor] **may** use whatever threading or process model it likes underneath the hood,
/// as long as it obeys the above.
///
/// Method calls **should** block instead of erroring where possible.
///
/// Underlying solvers that only have one instance per process (such as Minion) **should** block
/// (eg. using a [`Mutex<()>`](`std::sync::Mutex`)) to run calls to
/// [`Solver<A,ModelLoaded>::solve()`] and [`Solver<A,ModelLoaded>::solve_mut()`] sequentially.
pub trait SolverAdaptor: private::Sealed + Any {
/// Runs the solver on the given model.
///
/// Implementations of this function **must** call the user provided callback whenever a solution
/// is found. If the user callback returns `true`, search should continue, if the user callback
/// returns `false`, search should terminate.
///
/// # Returns
///
/// If the solver terminates without crashing a [SolveSuccess] struct **must** returned. The
/// value of [SearchStatus] can be used to denote whether the underlying solver completed its
/// search or not. The latter case covers most non-crashing "failure" cases including user
/// termination, timeouts, etc.
///
/// To help populate [SearchStatus], it may be helpful to implement counters that track if the
/// user callback has been called yet, and its return value. This information makes it is
/// possible to distinguish between the most common search statuses:
/// [SearchComplete::HasSolutions], [SearchComplete::NoSolutions], and
/// [SearchIncomplete::UserTerminated].
fn solve(
&mut self,
callback: SolverCallback,
_: private::Internal,
) -> Result<SolveSuccess, SolverError>;
/// Runs the solver on the given model, allowing modification of the model through a
/// [`ModelModifier`].
///
/// Implementations of this function **must** return [`OpNotSupported`](`ModificationFailure::OpNotSupported`)
/// if modifying the model mid-search is not supported.
///
/// Otherwise, this should work in the same way as [`solve`](SolverAdaptor::solve).
fn solve_mut(
&mut self,
callback: SolverMutCallback,
_: private::Internal,
) -> Result<SolveSuccess, SolverError>;
fn load_model(&mut self, model: Model, _: private::Internal) -> Result<(), SolverError>;
fn init_solver(&mut self, _: private::Internal) {}
/// Get the solver family that this solver adaptor belongs to
fn get_family(&self) -> SolverFamily;
/// Gets the name of the solver adaptor for pretty printing.
fn get_name(&self) -> Option<String> {
None
}
/// Adds the solver adaptor name and family (if they exist) to the given stats object.
fn add_adaptor_info_to_stats(&self, stats: SolverStats) -> SolverStats {
SolverStats {
solver_adaptor: self.get_name(),
solver_family: Some(self.get_family()),
..stats
}
}
}
/// An abstract representation of a constraints solver.
///
/// [Solver] provides a common interface for interacting with a constraint solver. It also
/// abstracts over solver-specific datatypes, handling the translation to/from [conjure_core::ast]
/// types for a model and its solutions.
///
/// Details of how a model is solved is specified by the [SolverAdaptor]. This includes: the
/// underlying solver used, the translation of the model to a solver compatible form, how solutions
/// are translated back to [conjure_core::ast] types, and how incremental solving is implemented.
/// As such, there may be multiple [SolverAdaptor] implementations for a single underlying solver:
/// e.g. one adaptor may give solutions in a representation close to the solvers, while another may
/// attempt to rewrite it back into Essence.
///
#[derive(Clone)]
pub struct Solver<A: SolverAdaptor, State: SolverState = Init> {
state: State,
adaptor: A,
context: Option<Arc<RwLock<Context<'static>>>>,
}
impl<Adaptor: SolverAdaptor> Solver<Adaptor> {
pub fn new(solver_adaptor: Adaptor) -> Solver<Adaptor> {
let mut solver = Solver {
state: Init,
adaptor: solver_adaptor,
context: None,
};
solver.adaptor.init_solver(private::Internal);
solver
}
pub fn get_family(&self) -> SolverFamily {
self.adaptor.get_family()
}
}
impl<A: SolverAdaptor> Solver<A, Init> {
pub fn load_model(mut self, model: Model) -> Result<Solver<A, ModelLoaded>, SolverError> {
let solver_model = &mut self.adaptor.load_model(model.clone(), private::Internal)?;
Ok(Solver {
state: ModelLoaded,
adaptor: self.adaptor,
context: Some(model.context.clone()),
})
}
}
impl<A: SolverAdaptor> Solver<A, ModelLoaded> {
pub fn solve(
mut self,
callback: SolverCallback,
) -> Result<Solver<A, ExecutionSuccess>, SolverError> {
#[allow(clippy::unwrap_used)]
let start_time = Instant::now();
#[allow(clippy::unwrap_used)]
let result = self.adaptor.solve(callback, private::Internal);
let duration = start_time.elapsed();
match result {
Ok(x) => {
let stats = self
.adaptor
.add_adaptor_info_to_stats(x.stats)
.with_timings(duration.as_secs_f64());
Ok(Solver {
adaptor: self.adaptor,
state: ExecutionSuccess {
stats,
status: x.status,
_sealed: private::Internal,
},
context: self.context,
})
}
Err(x) => Err(x),
}
}
pub fn solve_mut(
mut self,
callback: SolverMutCallback,
) -> Result<Solver<A, ExecutionSuccess>, SolverError> {
#[allow(clippy::unwrap_used)]
let start_time = Instant::now();
#[allow(clippy::unwrap_used)]
let result = self.adaptor.solve_mut(callback, private::Internal);
let duration = start_time.elapsed();
match result {
Ok(x) => {
let stats = self
.adaptor
.add_adaptor_info_to_stats(x.stats)
.with_timings(duration.as_secs_f64());
Ok(Solver {
adaptor: self.adaptor,
state: ExecutionSuccess {
stats,
status: x.status,
_sealed: private::Internal,
},
context: self.context,
})
}
Err(x) => Err(x),
}
}
}
impl<A: SolverAdaptor> Solver<A, ExecutionSuccess> {
pub fn stats(&self) -> SolverStats {
self.state.stats.clone()
}
// Saves this solvers stats to the global context as a "solver run"
pub fn save_stats_to_context(&self) {
#[allow(clippy::unwrap_used)]
#[allow(clippy::expect_used)]
self.context
.as_ref()
.expect("")
.write()
.unwrap()
.stats
.add_solver_run(self.stats());
}
pub fn wall_time_s(&self) -> f64 {
self.stats().conjure_solver_wall_time_s
}
}
/// Errors returned by [Solver] on failure.
#[non_exhaustive]
#[derive(Debug, Error, Clone)]
pub enum SolverError {
#[error("operation not implemented yet: {0}")]
OpNotImplemented(String),
#[error("operation not supported: {0}")]
OpNotSupported(String),
#[error("model feature not supported: {0}")]
ModelFeatureNotSupported(String),
#[error("model feature not implemented yet: {0}")]
ModelFeatureNotImplemented(String),
// use for semantics / type errors, use the above for syntax
#[error("model invalid: {0}")]
ModelInvalid(String),
#[error("error during solver execution: not implemented: {0}")]
RuntimeNotImplemented(String),
#[error("error during solver execution: {0}")]
Runtime(String),
}
/// Returned from [SolverAdaptor] when solving is successful.
pub struct SolveSuccess {
stats: SolverStats,
status: SearchStatus,
}
pub enum SearchStatus {
/// The search was complete (i.e. the solver found all possible solutions)
Complete(SearchComplete),
/// The search was incomplete (i.e. it was terminated before all solutions were found)
Incomplete(SearchIncomplete),
}
#[non_exhaustive]
pub enum SearchIncomplete {
Timeout,
UserTerminated,
#[doc(hidden)]
/// This variant should not be matched - it exists to simulate non-exhaustiveness of this enum.
__NonExhaustive,
}
#[non_exhaustive]
pub enum SearchComplete {
HasSolutions,
NoSolutions,
#[doc(hidden)]
/// This variant should not be matched - it exists to simulate non-exhaustiveness of this enum.
__NonExhaustive,
}